471 research outputs found

    A mutation in caspase-9 decreases the expression of BAFFR and ICOS in patients with immunodeficiency and lymphoproliferation

    Get PDF
    Lymphocyte apoptosis is mainly induced by either death receptor-dependent activation of caspase-8 or mitochondria-dependent activation of caspase-9. Mutations in caspase-8 lead to autoimmunity/lymphoproliferation and immunodeficiency. This work describes a heterozygous H237P mutation in caspase-9 that can lead to similar disorders. H237P mutation was detected in two patients: Pt1 with autoimmunity/lymphoproliferation, severe hypogammaglobulinemia and Pt2 with mild hypogammaglobulinemia and Burkitt lymphoma. Their lymphocytes displayed defective caspase-9 activity and decreased apoptotic and activation responses. Transfection experiments showed that mutant caspase-9 display defective enzyme and proapoptotic activities and a dominant-negative effect on wild-type caspase-9. Ex vivo analysis of the patients' lymphocytes and in vitro transfection experiments showed that the expression of mutant caspase-9 correlated with a downregulation of BAFFR (B-cell-activating factor belonging to the TNF family (BAFF) receptor) in B cells and ICOS (inducible T-cell costimulator) in T cells. Both patients carried a second inherited heterozygous mutation missing in the relatives carrying H237P: Pt1 in the transmembrane activator and CAML interactor (TACI) gene (S144X) and Pt2 in the perforin (PRF1) gene (N252S). Both mutations have been previously associated with immunodeficiencies in homozygosis or compound heterozygosis. Taken together, these data suggest that caspase-9 mutations may predispose to immunodeficiency by cooperating with other genetic factors, possibly by downregulating the expression of BAFFR and ICO

    Diamond-Blackfan anemia: a ribosomal puzzle

    Full text link

    Dupilumab ocular side effects in patients with atopic dermatitis: a systematic review

    Get PDF
    Atopic dermatitis (AD) is a chronic, inflammatory skin disorder that most frequently occurs in children, but it can also affect adults. Even though most AD cases can be managed with topical treatments, moderate-to-severe forms require systemic therapies. Dupilumab is the first human monoclonal antibody approved for the treatment of AD. Its action is through IL-4 receptor alpha subunit inhibition, thus blocking IL-4 and IL-13 signaling pathways. It has been shown to be an effective, well-tolerated therapy for AD, as well as for asthma, chronic rhinosinusitis with nasal polyposis (CRSwNP), and eosinophilic esophagitis (EoE). However, an increasing incidence of dupilumab-induced ocular surface disease (DIOSD) has been reported in patients treated with dupilumab, as compared to placebo. The aim of this study was to summarize scientific data regarding DIOSD in AD patients treated with dupilumab. A search of PubMed and clinicaltrials.gov databases was performed. There was no limit to study design. All AD cases were moderate-to-severe. DIOSD was either dermatologist-, allergist-, or ophthalmologist-assessed. Evidence shows that DIOSD occurs most frequently in patients with atopic dermatitis and not in other skin conditions, neither in patients with asthma, CRSwNP, nor EoE who are on dupilumab treatment. Further studies are warranted in order to establish a causal relationship between dupilumab and ocular surface disease. Nevertheless, ophthalmological evaluations prior to dupilumab initiation can benefit AD patients with previous ocular pathology or current ocular symptomatology. Also, patch testing for ocular allergic contact dermatitis might be advantageous in patients with a history of allergic conjunctivitis. Furthermore, TARC, IgE, and circulating eosinophils levels might be important biomarkers for a baseline assessment of future candidates to dupilumab treatment. However, TARC measurements should be resumed for research purposes only

    ICOS-Fc as innovative immunomodulatory approach to counteract inflammation and organ injury in sepsis

    Get PDF
    Inducible T cell co-stimulator (ICOS), an immune checkpoint protein expressed on activated T cells and its unique ligand, ICOSL, which is expressed on antigen-presenting cells and non-hematopoietic cells, have been extensively investigated in the immune response. Recent findings showed that a soluble recombinant form of ICOS (ICOS-Fc) can act as an innovative immunomodulatory drug as both antagonist of ICOS and agonist of ICOSL, modulating cytokine release and cell migration to inflamed tissues. Although the ICOS-ICOSL pathway has been poorly investigated in the septic context, a few studies have reported that septic patients have reduced ICOS expression in whole blood and increased serum levels of osteopontin (OPN), that is another ligand of ICOSL. Thus, we investigated the pathological role of the ICOS-ICOSL axis in the context of sepsis and the potential protective effects of its immunomodulation by administering ICOS-Fc in a murine model of sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in five-month-old male wild-type (WT) C57BL/6, ICOS(-/-), ICOSL(-/-) and OPN(-/-) mice. One hour after the surgical procedure, either CLP or Sham (control) mice were randomly assigned to receive once ICOS-Fc, (F119S)ICOS-Fc, a mutated form uncapable to bind ICOSL, or vehicle intravenously. Organs and plasma were collected 24 h after surgery for analyses. When compared to Sham mice, WT mice that underwent CLP developed within 24 h a higher clinical severity score, a reduced body temperature, an increase in plasma cytokines (TNF-α, IL-1β, IL-6, IFN-γ and IL-10), liver injury (AST and ALT) and kidney (creatinine and urea) dysfunction. Administration of ICOS-Fc to WT CLP mice reduced all of these abnormalities caused by sepsis. Similar beneficial effects were not seen in CLP-mice treated with (F119S)ICOS-Fc. Treatment of CLP-mice with ICOS-Fc also attenuated the sepsis-induced local activation of FAK, P38 MAPK and NLRP3 inflammasome. ICOS-Fc seemed to act at both sides of the ICOS-ICOSL interaction, as the protective effect was lost in septic knockout mice for the ICOS or ICOSL genes, whereas it was maintained in OPN knockout mice. Collectively, our data show the beneficial effects of pharmacological modulation of the ICOS-ICOSL pathway in counteracting the sepsis-induced inflammation and organ dysfunction

    High levels of osteopontin associated with polymorphisms in its gene are a risk factor for development of autoimmunity/lymphoproliferation

    Get PDF
    The autoimmune/lymphoproliferative syndrome (ALPS) displays defective function of Fas, autoimmunities, lymphadenopathy/splenomegaly, and expansion of CD4/CD8 double-negative (DN) T cells. Dianzani autoimmune/lymphoproliferative disease (DALD) is an ALPS variant lacking DN cells. Both forms have been ascribed to inherited mutations hitting the Fas system but other factors may be involved. A pilot cDNA array analysis on a DALD patient detected overexpression of the cytokine osteopontin (OPN). This observation was confirmed by enzyme-linked immunosorbent assay (ELISA) detection of higher OPN serum levels in DALD patients (n = 25) than in controls (n = 50). Analysis of the OPN cDNA identified 4 polymorphisms forming 3 haplotypes (A, B, and C). Their overall distribution and genotypic combinations were different in patients (N = 26) and controls (N = 158) (P <.01). Subjects carrying haplotype B and/or C had an 8-fold higher risk of developing DALD than haplotype A homozygotes. Several data suggest that these haplotypes influence OPN levels: (1) in DALD families, high levels cosegregated with haplotype B or C; (2) in healthy controls, haplotype B or C carriers displayed higher levels than haplotype A homozygotes; and (3) in AB and AC heterozygotes, mRNA for haplotype B or C was more abundant than that for haplotype A. In vitro, exogenous OPN decreased activation-induced T-cell death, which suggests that high OPN levels are involved in the apoptosis defect
    • …
    corecore